You are viewing a read-only archive of the Blogs.Harvard network. Learn more.

~ Archive for Southeast Asia ~

Stepping up to prepare for possible power outages when our environment becomes colder or hotter with work-from-home arrangements

ø

Photo by Pixal Bay

 

Written by Zeng Han Jun

As the climate continues to change, some parts of the world will become hotter and other regions will become colder. Combined with an increasing reliance on electronic devices to carry out our work and express our lives, our energy demands can only continue to grow and it will increasingly burden our existing electric grid system. 

 

Compounded with Work-from-home (WFH) arrangements, the matter might become worse, especially during winter/ summer. We have already been through one summer and one winter during this Covid 19 pandemic and already witnessed how it played a role in causing power outages in several regions around the world. Moving forward, we could expect to witness more power outages throughout various parts of the world.  

 

Office and industrial buildings are often located on the most capacious sections of a metropolitan electrical grid.  However, most residential area’s electrical grid system is generally built to support heavy consumption in the early mornings and nights, with hours to cool off throughout the day. Can residential area’s electrical grid system support WFH arrangements and perform at the same level as the electrical grid systems that are located in office areas?

 

Consumption patterns in cities such as New York and California have already shifted as a result of the Covid 19 epidemic, with demand peaking throughout the day. Overall use is already increasing by an average of 7% in New York City apartments (Meinrenken, 2020).

 

 graph of electricity consumption before and during covid-19 pandemic

Source: Columbia University

 

There is no reason to believe that the changes we are seeing in New York City are not happening elsewhere. Where energy loads are predominantly residential and there is no proportionate drop in non-residential load, we should expect overall energy demands to continue to rise, with a higher risk of disruptions to current energy supply and distribution systems.

 

The danger of failure in aging transformers, cables, and other equipment grows when the summer heat and winter cold continue to hit new highs/ lows while heaters or air conditioners remain on throughout the day.

 

There are three things that household should be encouraged to do: 

  1. Do an energy stock take of all the electrical appliances within the household; 
  2. With the new found understanding of the energy consumption patterns, further identify the essential energy usage so that households can quickly make backup plans for those services during times of emergency; and 
  3. Obtain alternative energy sources to tide over the emergency. Renewable energy sources and battery storage  must be able to provide sufficient energy for essential usages. 

 

Even if governments provide temporary reliefs during power outages in face of increasing/ decreasing temperature events , many companies that rely on remote workers in these regions will be affected by the reduced productivity.

 

As WFH arrangements continue, the oldest and most exhausted transformers and transmission equipment may be affected. Reduced commercial demand would jeopardise power companies’ revenues and, as a result, their capacity to replace outdated components in the long run, perhaps leading to widespread breakdowns in the future.

 

Governments must keep anticipating and prepare for possible future events and step in to work with power companies to audit the current electrical grid system. 

 

References

Meinrenken, C. J. (2020, April 24). New Data Suggest COVID-19 Is Shifting the Burden of Energy Costs to Households. Retrieved from https://news.climate.columbia.edu/2020/04/21/covid-19-energy-costs-households/

 

Rethinking our electrical grid system and explore alternative sustainable energy sources to complement photovoltaic energy

ø

Photo by Maegan White

 

Written by Zeng Han Jun

There was a recent debate in South Korea about how solar panels are responsible for deforestation and possibly even linked to forest fires. It is not new. This argument has been going on for more than a decade but the stakes are much higher now. Investments in solar panels have been increasing steadily as energy providers try to diversify their business. Some of the oil companies are throwing significant investments into the solar business. That South Korea government unit acknowledged the report but neither agreed nor disagreed with the findings. However, the unit did share some best practices in solar panel installation, which is mainly about how the solar panels should be sloped during installation. 

 

To be honest, solar energy production in cities is clearly one of the many ways to reduce our reliance on fossil fuels and could be a good way to mitigate global warming by lowering Greenhouse Gas (GHG) emissions. Although photovoltaic (PV) renewable energy production has increased, questions remain about whether PV panels and PV power plants cause a “photovoltaic heat island” (PVHI) effect, similar to how an increase in ambient temperatures relative to wildlands causes an Urban Heat Island (UHI) effect in cities (Barron-Gafford, Minor, Allen, Cronin, Brooks, Pavao-Zuckerman, 2016). 

 

Cities are fundamentally concretised urban landscapes and the most significant impact of cities on local weather is the UHI effect. Heat islands are urbanised areas with higher temperatures than surrounding areas. Buildings, roads, and other infrastructure absorb and re-emit more heat from the sun than natural landscapes such as forests and bodies of water. Urban areas, where these structures are densely packed and greenery is scarce, become hotspots for outlying areas.

 

Some studies have pointed out that PV panels and PV plants change the structure of the landscape, in how incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated. Energy absorbed by vegetation and surface soils can be released as latent heat in the transition of liquid water to water vapour to the atmosphere through a process known as evapotranspiration (Masson, Bonhomme, Salagnac, Briottet, Lemonsu, 2001). PV kind of disturbs that process. So, a PVHI effect might be caused by a measurable increase in atmospheric warming as a result of a change in the balance of incoming and outgoing energy fluxes caused by the transformation of the landscape.

 

Research on PVHI is still ongoing while more investments are pouring into this domain. On the other spectrum, there are people who are very optimistic about this technology and even suggested using PV panels to pave roads and open space car parks. Their research has shown that PV pavement decreases surface temperature by 3 to 5 °C in summer and generates 11 to 12% less heat output at various climate conditions, all while generating electricity at the same time (Xie, Wang, 2021). 

 

PV technology is very important because we have an abundance of sunlight in most places but still we should not rely too much on a single energy source. It never makes sense to put all eggs into the same basket. Very cliché but I think that there is a lot of sense in that sentence. 

 

Given the current climate change condition, the scientific community still cannot collectively conclude how our environment will turn out in the future. Nobody dares to put a finger to it, especially when it has been discovered that climate models deviates a fair bit from real world conditions. To be fair, it is not easy to build a climate model because the climatic conditions are so complex, our mathematical models are good but there is the possibility that the math might not perform as expected when more factors come into play.  

 

Apart from using mathematics to forecast possible scenarios, people have also turned to observation of weather conditions on nearby planets as an indication of how Earth might turn out to be in the future. A lot of studies were performed on planet Venus in the 70s and 80s? Now, the people’s attention has shifted somewhat to the planet Mars but the scientific community are still onto the planet Venus though. Many within the scientific community agree that the study of the planet Venus could be one of the keys to understanding planet Earth’s possible future. 

 

First thing first, planet Venus looks beautiful from a distance but it is hellish within the planet’s  atmosphere, with surface temperatures in excess of 400 °C. Space probes sent to scout the planet, melted in an hour or two upon entering into its atmosphere. All the water had disappeared. An explanation stated that the water has broken down and the hydrogen escaped into space. Carbon dioxide and sulphuric acid are in excess throughout the planet. Quite literally a burning hell in our part of the universe. 

 

Some postulated that Venus used to be like Earth but later experienced a greenhouse effect. It then escalated into a runaway greenhouse effect. A runaway greenhouse effect, simply explained, is when there are too much greenhouse gases (usually water vapour) in the atmosphere which results in an increasing amount of heat trapped within the planet. The runaway greenhouse effect is most often associated with water vapour as the condensable GHG. In our case, the water vapour could reach the upper space limit of our planet Earth and escapes into space, resulting in a dried-up planet. This may have happened in the early history of Venus.

 

In the meantime, sea level will still continue to rise, for centuries to come. Many studies have shown that even if human-caused carbon dioxide emissions were to completely stop, the associated atmospheric warming and sea-level rise would continue for more than 1,000 years. These effects are caused in part by the residence time of carbon dioxide. The greenhouse gas can continue to stay in the atmosphere for a long time after it is emitted by industrial processes (NASA, 2017).

 

Flooding will continue to plague low-lying or coastal cities therefore there is a strong need to rethink urban planning and the grid system. Places with underground utility cables must reimagine how they deliver energy to houses and workplaces. Rising temperature might affect the insulation covers of the utility cables, exposing electrical wires to potential flood situations thereby causing danger to nearby humans/ animals and also pose obstacles to delivering energy to places beyond the power plant. 

 

We could explore siting power plants on top of individual buildings with cables delivering energy from the rooftop to respective units below. PV panels can continue to work at lower efficiency when clouds become denser and when the humidity increases. Still, we must be prepared to obtain energy from alternative sustainable energy sources, to augment the reduced output of PV power plants. 

 

Cities without alternative energy options will be at the greatest risk. Some of these cities are unable to harness renewable energy options like wind and hydro energy. As such, these cities must quickly pay more attention to less popular but emerging energy possibilities like hygroelectricity (converting humidity to electricity), piezoelectricity (obtaining electricity from crystals, dry bones or similar materials), etc. 

 

Last month, a Japanese team managed to successfully carry out an hygroelectricity experiment to power a very small motor (Komazaki, Kanazawa, Nobeshima, Hirama, Watanabe, Suemori, Uemura, 2021). I feel very encouraged by the results of their experiment. Even though the electricity output is very small compared to what PV panels can achieve, I feel that there is a lot of potential in scaling up this technology. The hygroelectricity generator could be constructed into a panel but mounted on external walls of buildings. Of course, there are still a lot of challenges ahead for this technology but I see some potential too. 

 

In fact, we must actively think out of the box (Very cliché, I know. We should really just do away with the box) and explore different alternative energy sources. There are significant advances in harnessing energy from sound (vibrations), heat (not geothermal), radioactivity, etc and we should reimagine how different energy sources could be wired up to a single battery station that delivers electricity to a localised building so that services could sustain even in the event of an intense and persistent flood. Of course, this is just a suggestion and there are many other ways to go about it too but first, we need to spark more conversations on this issue. 

 

References

(n.d.). Retrieved from https://www.epa.gov/heatislands

 

6 Causes of Urban Heat Islands and 4 Ways to Offset Them. (n.d.). Retrieved from https://www.buildings.com/articles/27532/6-causes-urban-heat-islands-and-4-ways-offset-them

 

Aggarwal, V. (2021, May 28). How Much Energy Does A Solar Panel Produce?: EnergySage. Retrieved from https://news.energysage.com/what-is-the-power-output-of-a-solar-panel/

 

Average monthly humidity in Singapore, Singapore. (1970, July 30). Retrieved from https://weather-and-climate.com/average-monthly-Humidity-perc,Singapore,Singapore

 

Barron-Gafford, G. A., Minor, R. L., Allen, N. A., Cronin, A. D., Brooks, A. E., & Pavao-Zuckerman, M. A. (2016, October 13). The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Retrieved from https://www.nature.com/articles/srep35070

 

Evaluation of Electric Energy Generation from Sound Energy Using Piezoelectric Actuator. (2016). International Journal of Science and Research (IJSR), 5(1), 218-225. doi:10.21275/v5i1.nov152677

 

First Real Images Of Venus – What Have We Discovered? (2020, December 12). Retrieved from https://www.youtube.com/watch?v=Fbdojp9LTLc&ab_channel=TheSimplySpace

 

Hygroelectricity. (2020, June 03). Retrieved from https://en.wikipedia.org/wiki/Hygroelectricity

 

Komazaki, Y., Kanazawa, K., Nobeshima, T., Hirama, H., Watanabe, Y., Suemori, K., & Uemura, S. (2021). Energy harvesting by ambient humidity variation with continuous milliampere current output and energy storage. Sustainable Energy & Fuels, 5(14), 3570-3577. doi:10.1039/d1se00562f

 

Masson, V., Bonhomme, M., Salagnac, J., Briottet, X., & Lemonsu, A. (0001, January 01). Solar panels reduce both global warming and urban heat island. Retrieved from https://www.frontiersin.org/articles/10.3389/fenvs.2014.00014/full

 

Runaway greenhouse effect. (2021, July 31). Retrieved from https://en.wikipedia.org/wiki/Runaway_greenhouse_effect

 

Short-lived greenhouse gases cause centuries of sea-level rise – Climate Change: Vital Signs of the Planet. (2017, January 13). Retrieved from https://climate.nasa.gov/news/2533/short-lived-greenhouse-gases-cause-centuries-of-sea-level-rise/

 

Xie, P., & Wang, H. (2021). Potential benefit of photovoltaic pavement for mitigation of urban heat island effect. Applied Thermal Engineering, 191, 116883. doi:10.1016/j.applthermaleng.2021.116883

Sustainable Urban Development is the Key to the Continual Success of Southeast Asia Region

ø

By Zeng Han Jun (hjzeng@alumni.harvard.edu)

The sudden emergence of the Covid-19 pandemic has transformed the way that many of us perceived issues like working arrangements, commute options, housing needs amongst others. Still, the fundamental needs for affordable housing, environmental, social and governance (ESG) awareness and actions remain part and parcel of modern life in and beyond the cities. Governments, together with the Non-Government Organisations (NGOs) and private sector must embrace an open and collaborative approach to tackle some of the most challenging issues of our times, for example, the provision of a sustainable urban environment that allows for healthy socio-economics dynamics. 

From what I have seen, learnt and discussed with various organisations, I firmly believe that two important foundations were put into action during the Covid-19 period that could empower collaborative actions towards sustainable urban development and growth in the Southeast Asia region.  

First, the Southeast Asian countries came together and signed the Regional Comprehensive Economic Partnership (RCEP), which is a free trade agreement between the ten member states of the Association of Southeast Asian Nations (ASEAN) and its six Free Trade Agreement partners i.e. Australia, China, India, Japan, New Zealand and Republic of Korea . ASEAN comprises countries like Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand and Vietnam.

The RCEP marks ASEAN’s biggest free trade pact to date, covering a market of 2.2 billion people with a combined size of US$26.2 trillion or 30% of the world’s GDP. While it is largely being perceived as an economic partnership, studies have shown that the economy does affect the environment to a certain extent, which is why there are growing interests in promoting and activating the circular economy model to enable more sustainable and environmentally-friendly growth. 

With the RCEP, quotas and tariffs would be eliminated in over 65% of goods traded and this might improve market access. Business dealings would be made predictable with common rules of origin and transparent regulations which is always one of the top concerns for any potential investors. Apart from this, it also presents an opportunity to shape business policies to be more in line with environmentally-friendly practices and equitable social growth. A more holistic approach would encourage more firms to invest more in the region, including building resilient supply chains and services that could mitigate ESG-related risks and generating jobs that are grounded on strong meritocratic principles. 

Second, city mayors are stepping up with their experiences in working with international organisations on ESG-related projects. For example, Pasig City Mayor Vico Sotto from the Philippines, stepped up to initiate the ‘mobile market’ where city residents could purchase fresh goods right from their vicinity. This initiative encouraged people to stay home as the ‘mobile market’ is accessible. This reduced logistics transportation thereby reducing carbon emission and also helped in activating the local market. These upcoming mayors are well-positioned to understand the benefits of responding to global trends and commitments such as climate change, changing human behaviors and other ESG-related issues. 

Some of the more progressive countries within the Southeast Asia region, have emphasised on underpinning their forward policies with the sustainable development pillars. Cities must continually keep up and work towards creating a place to live, work and play and this has clearly become an even more important concept during the Covid-19 pandemic. During the pandemic, many already observed that global talents can continue to contribute productively from anywhere in the world therefore, do not really have the need to seek out places for work. To attract global talents, the main differentiator would be to create an environment that has high quality of life and also be climate-risks resilient. 

Apart from this, the attention is also once more again on urban areas and the mixed-use planning of these locations. Studies have also shown that people’s travelling behavior has changed under the lockdowns that were imposed during the Covid-19 pandemic. Demand for travel has reduced and that people will travel less by public transport. Walking and cycling can be important ways to maintain satisfactory levels of health and well-being. This will change the way urban planning is traditionally planned and unfolded. This entails a discussion with urban planning professionals and other stakeholders on urban density, open spaces and the demand for affordable housing.

My work with planners and finance firms from the region and beyond, revealed that there is a growing interest in the terms “Resilience” and “Climate Risk” and it is mainly driven by issues stemming from climate change. One common topic is to develop strategies to sustain the functioning of urban communities, business operations, supply chain operations amid stresses and disruptions that might occur due to climate change. A good number of cities around the globe are improving in this area and more Southeast Asian cities should certainly do more in this area too.  

Sustainable urban development is no easy task. Execution requires coordinating and communicating with stakeholders who sometimes do not see eye-to-eye on certain issues and it calls for a lot of skill and persistence to pull projects through. This is especially so for places where the administration has to take into consideration the rural areas and smaller communities, and how these communities seamlessly integrate with the changes of the urban and major cities.  

Keeping sustainable urban development on track entails setting out clear guidelines with hawkish monitoring. The mantra is to adopt a Whole-of-system approach whereby all arms of urban development work hand-in-hand and not against one another, while keeping the big picture in mind. Uninterrupted lateral and vertical communication is one of the key enablers to actualising the Whole-of-system approach, with proper mechanisms in place to review and adapt to new information. New information may sometimes require novel adaptation and is absolutely critical to fostering a city that flourishes.  

Sustainable urban development is not the only option moving forward but with many environmental indicators trending south at the moment, it could be the only logical pathway to Southeast Asia region’s future. 

===

References

(n.d.). Retrieved from https://www.msn.com/en-ph/entertainment/entertainmentnews/mayor-vico-sotto-earns-admiration-due-to-his-global-recognition-as-one-of-the-anti-corruption-champions/ar-BB1dYYMW

ASEAN hits historic milestone with signing of RCEP. (2020, November 26). Retrieved from https://rcepsec.org/2020/11/26/asean-hits-historic-milestone-with-signing-of-rcep/

Morais, L. H., Pinto, D. C., & Cruz-Jesus, F. (2021). Circular economy engagement: Altruism, status, and cultural orientation as drivers for sustainable consumption. Sustainable Production and Consumption, 27, 523-533. doi:10.1016/j.spc.2021.01.019

UNUniversity. (n.d.). How Cities in South-East Asia Are Acting on the SDGs Ahead of Their National Governments. Retrieved from https://ourworld.unu.edu/en/how-cities-in-southeast-asia-are-acting-on-the-sdgs-ahead-of-their-national-governments

Vos, J. D. (2020). The effect of COVID-19 and subsequent social distancing on travel behavior. Transportation Research Interdisciplinary Perspectives, 5, 100121. doi:10.1016/j.trip.2020.100121

Log in